Hire Apache Spark Developer

Apache Spark
Upstaff is the best deep-vetting talent platform to match you with top Apache Spark developers for hire. Scale your engineering team with the push of a button
Apache Spark
Show Rates Hide Rates
Grid Layout Row Layout
Azure 5yr.
Python 4yr.
SQL 5yr.
Cloudera 2yr.
PySpark
Apache Airflow
Apache Spark
AWS Athena
Databricks
Data modeling Kimbal
Microsoft Azure Synapse Analytics
Microsoft Power BI
Tableau
Apache Spark
AWS ElasticSearch
AWS Redshift
dbt
HDFS
Microsoft Azure SQL Server
NoSQL
Oracle Database
Snowflake
Spark SQL
SSAS
SSIS
SSRS
AWS
GCP (Google Cloud Platform)
AWS ElasticSearch
AWS EMR
AWS Glue
AWS Glue Studio
AWS Redshift
AWS S3
Azure HDInsight
Azure Key Vault
Databricks
Microsoft Azure SQL Server
Microsoft Azure Synapse Analytics
Grafana
Inmon
Kafka
...

- 12+ years experience working in the IT industry; - 12+ years experience in Data Engineering with Oracle Databases, Data Warehouse, Big Data, and Batch/Real time streaming systems; - Good skills working with Microsoft Azure, AWS, and GCP; - Deep abilities working with Big Data/Cloudera/Hadoop, Ecosystem/Data Warehouse, ETL, CI/CD; - Good experience working with Power BI, and Tableau; - 4+ years experience working with Python; - Strong skills with SQL, NoSQL, Spark SQL; - Good abilities working with Snowflake and DBT; - Strong abilities with Apache Kafka, Apache Spark/PySpark, and Apache Airflow; - Upper-Intermediate English.

Show more
Seniority Senior (5-10 years)
Location Norway
AWS big data services 5yr.
Microsoft Azure 3yr.
Python
Kafka
ETL
C#
C++
Scala
Big Data Fundamentals via PySpark
Deep Learning in Python
Keras
Linear Classifiers in Python
Pandas
PySpark
TensorFlow
Theano
.NET
.NET Core
.NET Framework
Apache Airflow
Apache Hive
Apache Oozie 4
Apache Spark
Apache Spark 2
Data Analysis
Apache Hadoop
Apache Hive
Apache Spark
Apache Spark 2
AWS Database
dbt
HDP
Microsoft SQL Server
pgSQL
PostgreSQL
Snowflake
SQL
AWS ML (Amazon Machine learning services)
Keras
Machine Learning
OpenCV
TensorFlow
Theano
AWS
GCP (Google Cloud Platform)
AWS Database
AWS ML (Amazon Machine learning services)
AWS Quicksight
AWS Storage
GCP AI
GCP Big Data services
Apache Kafka 2
Apache Oozie 4
Kubernetes
OpenZeppelin
Qt Framework
YARN 3
SPLL
Superset
...

- Data Engineer with a Ph.D. degree in Measurement methods, Master of industrial automation - 16+ years experience with data-driven projects - Strong background in statistics, machine learning, AI, and predictive modeling of big data sets. - AWS Certified Data Analytics. AWS Certified Cloud Practitioner. Microsoft Azure services. - Experience in ETL operations and data curation - PostgreSQL, SQL, Microsoft SQL, MySQL, Snowflake - Big Data Fundamentals via PySpark, Google Cloud, AWS. - Python, Scala, C#, C++ - Skills and knowledge to design and build analytics reports, from data preparation to visualization in BI systems.

Show more
Seniority Expert (10+ years)
Location Ukraine
Python 9yr.
SQL 6yr.
Microsoft Power BI 5yr.
Reltio
Databricks
Tableau 5yr.
NoSQL 5yr.
REST 5yr.
GCP (Google Cloud Platform) 4yr.
Data Testing 3yr.
AWS 3yr.
Data Testing 3yr.
R 2yr.
Shiny 2yr.
Spotfire 1yr.
JavaScript
Machine Learning
PyTorch
Spacy
TensorFlow
Dask
Django Channels
Pandas
PySpark
Python Pickle
PyTorch
Scrapy
TensorFlow
Apache Airflow
Apache Spark
Data Mining
Data Modelling
Data Scraping
ETL
Reltio Data Loader
Reltio Integration Hub (RIH)
Sisense
Apache Spark
Aurora
AWS DynamoDB
AWS ElasticSearch
Microsoft SQL Server
MySQL
PostgreSQL
RDBMS
SQLAlchemy
AWS Bedrock
AWS CloudWatch
AWS DynamoDB
AWS ElasticSearch
AWS Fargate
AWS Lambda
AWS S3
AWS SQS
API
GraphQL
RESTful API
Selenium
Unit Testing
Git
Linux
Pipeline
RPA (Robotic Process Automation)
RStudio
BIGData
Cronjob
MDM
Mendix
Parallelization
Reltio APIs
Reltio match rules
Reltio survivorship rules
Reltio workflows
Vaex
...

- 8 years experience with various data disciplines: Data Engineer, Data Quality Engineer, Data Analyst, Data Management, ETL Engineer - Extensive hands-on expertise with Reltio MDM, including configuration, workflows, match rules, survivorship rules, troubleshooting, and integration using APIs and connectors (Databricks, Reltio Integration Hub), Data Modeling, Data Integration, Data Analyses, Data Validation, and Data Cleansing) - Data QA, SQL, Pipelines, ETL, Automated web scraping. - Data Analytics/Engineering with Cloud Service Providers (AWS, GCP) - Extensive experience with Spark and Hadoop, Databricks - 6 years of experience working with MySQL, SQL, and PostgreSQL; - 5 years of experience with Amazon Web Services (AWS), Google Cloud Platform (GCP) including Data Analytics/Engineering services, Kubernetes (K8s) - 5 years of experience with PowerBI - 4 years of experience with Tableau and other visualization tools like Spotfire and Sisense; - 3+ years of experience with AI/ML projects, background with TensorFlow, Scikit-learn and PyTorch; - Upper-intermediate to advanced English, - Henry is comfortable and has proven track record working with North American timezones (4hour+ overlap)

Show more
Seniority Senior (5-10 years)
Location Nigeria
Python
Kafka
Apache Spark
Snowflake
Databricks
Tableau
Data Warehousing
dbt
Firebase Realtime Database
Microsoft SQL Server
MySQL
PostgreSQL
AWS
Azure
GCP (Google Cloud Platform)
AWS S3
Azure
Databricks
Apache HTTP Server
Docker
Shell Scripts
Apache superset
Data Validation
GCP BigQuery
Snowflake Data Warehouse
Talend ETL
Trino
...

- Data Engineer with solid data pipelines, DWH, data lake architecture, development and optimization expertise on cloud platforms including Azure, GCP, and AWS. - Snowflake strong - advanced level - with a proven track record of automating ETL processes with multiple tools managing large-scale data warehousing, and enabling business intelligence through sophisticated analytics solutions. - Strong Python, Spark, Kafka, skills, - Experience creating datastore and DB architectures, ETL routines, data management and performance optimization - MSSQL, MySQL, Postgres. - In multiple projects, Vadym analysed and Improved operational efficiency, reduced data-related infrastructure costs, and delivered seamless data integration and transformation across systems.

Show more
Seniority Middle (3-5 years)
Location Kyiv, Ukraine
Scala
Akka
Akka Actors
Akka Streams
Cluster
Scala SBT
Scalatest
Apache Airflow
Apache Spark
Apache Hadoop
Apache Spark
AWS ElasticSearch
PostgreSQL
Slick database query
AWS
GCP (Google Cloud Platform)
Haddop
AWS ElasticSearch
Microsoft Azure API
ArgoCD
CI/CD
GitLab CI
Helm
Kubernetes
Travis CI
GitLab
HTTP
Kerberos
Kafka
RabbitMQ
Keycloak
Microsoft Azure API
Swagger
Observer
Responsive Design
Scalatest
Terraform
NLP
Unreal Engine
...

Software Engineer with proficiency in data engineering, specializing in backend development and data processing. Accrued expertise in building and maintaining scalable data systems using technologies such as Scala, Akka, SBT, ScalaTest, Elasticsearch, RabbitMQ, Kubernetes, and cloud platforms like AWS and Google Cloud. Holds a solid foundation in computer science with a Master's degree in Software Engineering, ongoing Ph.D. studies, and advanced certifications. Demonstrates strong proficiency in English, underpinned by international experience. Adept at incorporating CI/CD practices, contributing to all stages of the software development lifecycle. Track record of enhancing querying capabilities through native language text processing and executing complex CI/CD pipelines. Distinguished by technical agility, consistently delivering improvements in processing flows and back-end systems.

Show more
Seniority Senior (5-10 years)
Location Ukraine
Python 8yr.
AWS
R 1yr.
C++
Beautiful Soup
Keras
NLTK
NumPy
Pandas
PySpark
PyTorch
TensorFlow
Apache Airflow
Apache Spark
AWS Athena
Microsoft Power BI
Apache Spark
AWS ElasticSearch
AWS Redshift
Clickhouse
SQL
AWS SageMaker (Amazon SageMaker)
BERT
Keras
Kubeflow
Mlflow
NumPy
OpenCV
PyTorch
Spacy
TensorFlow
AWS EC2
AWS ECR
AWS ElasticSearch
AWS EMR
AWS Redshift
AWS S3
AWS SageMaker (Amazon SageMaker)
AWS Timestream (Amazon Time Series Database)
Eclipse
Grafana
Kafka
MQQT
Kubernetes
OpenAPI
ArcGIS
Autogen
GPT
Guroby
ONNX
Open Street Map
Rasa NLU
...

- 10+ years experience working in the IT industry; - 8+ years experience working with Python; - Strong skills with SQL; - Good abilities working with R and C++; - Deep knowledge of AWS; - Experience working with Kubernetes (K8s), and Grafana; - Strong abilities with Apache Kafka, Apache Spark/PySpark, and Apache Airflow; - Experience working with Amazon S3, Athena, EMR, Redshift; - Specialised in Data Science and Data Analysis; - Work experience as a team leader; - Upper-Intermediate English.

Show more
Seniority Expert (10+ years)
Location Poland
Rust
Solana
Java
PHP
Python
Scala
Django
Spring
Apache Spark
Apache Spark
AWS ElasticSearch
Cassandra
MongoDB
MySQL
PostgreSQL
AWS ElasticSearch
Blockchain
Agile
Bash
Docker
Git
GraphQL
GRPC
Kafka
RabbitMQ
Kubernetes
NEAR
Casper Network
Filecoin
Fuel
Zero Knowledge
...

- 8 + years experience in IT; - 5+ years experience working with Rust; - Good skills in creating smart contracts for Solana and NEAR Blockchains; - Experience in building a bridge to Casper Network; - Experience working with Filecoin, Zero Knowledge modules, and Fuel Blockchain; - Deep abilities with MySQL, PostgreSQL, MongoDB; - Experience working with Python, Java, PHP, Scala, and Spring; - Good knowledge of AWS ElasticSearch; - Experience working with Docker and Kubernetes (K8s); - Experience working with DeFi and DEX projects; - Deep skills with Apache Cassandra and Apache Spark; - English: Upper-Intermediate.

Show more
Seniority Senior (5-10 years)
Location Czech Republic
Python
Apache Spark
Scala
AngularJS
Node.js
Yarn
ASP.NET
Ionic
Java SE
JPA
Primefaces
Apache Hive
Flume
HBase
MapReduce
Sqoop
Apache Hive
Greenplum
Hibernate
Oracle Database
Azure
Azure
Kafka
Yarn
Ignite
SF
...

- 9+ years of experience as a development and architecture of Big Data solutions. - Advanced English - Available ASAP

Show more
Seniority Senior (5-10 years)
Location Sao Paulo, Brazil

Let’s set up a call to address your requirements and set up an account.

Talk to Our Expert

Our journey starts with a 30-min discovery call to explore your project challenges, technical needs and team diversity.
Manager
Maria Lapko
Global Partnership Manager
Trusted by People
Trusted by Businesses
Accenture
SpiralScout
Valtech
Unisoft
Diceus
Ciklum
Infopulse
Adidas
Proxet
Accenture
SpiralScout
Valtech
Unisoft
Diceus
Ciklum
Infopulse
Adidas
Proxet

Want to hire Apache Spark developer? Then you should know!

Share this article

TOP 10 Apache Spark Related Technologies

  • 1. Scala

    Scala is the most popular programming language for Apache Spark development. It is a statically typed language that seamlessly integrates with Spark, allowing developers to write concise and expressive code. Scala’s functional programming capabilities make it an excellent choice for distributed computing tasks.

  • 2. Java

    Java is another widely used language for Apache Spark development. It has a large developer community and extensive libraries, making it a solid choice for building Spark applications. Java provides a more object-oriented approach compared to Scala, which can be beneficial for certain use cases.

  • 3. Python

    Python is a versatile language that has gained popularity in the Spark ecosystem. It offers an easy-to-learn syntax and a rich set of libraries, making it accessible to both beginners and experienced developers. Python’s simplicity and readability make it an excellent choice for data exploration and prototyping.

  • 4. Apache Spark SQL

    Spark SQL is a module in Apache Spark that provides a programming interface for working with structured and semi-structured data. It allows developers to perform SQL-like queries on Spark data structures, making it easier to integrate Spark with existing data processing workflows.

  • 5. Apache Spark Streaming

    Spark Streaming is a powerful real-time processing engine in Apache Spark. It enables developers to ingest and process data streams in real-time, making it ideal for applications that require near-instantaneous insights from streaming data sources.

  • 6. Apache Spark MLlib

    MLlib is Spark’s machine learning library, which provides a rich set of algorithms and tools for building scalable machine learning models. It supports both batch and streaming data processing, making it a versatile choice for machine learning tasks on large datasets.

  • 7. Apache Kafka

    Apache Kafka is a distributed messaging system that integrates seamlessly with Apache Spark. It provides high-throughput, fault-tolerant messaging capabilities, making it an excellent choice for building scalable and reliable data pipelines in Spark applications.

TOP 12 Facts about Apache Spark

  • Apache Spark is an open-source, distributed computing system designed for big data processing and analytics.
  • Spark was originally developed at the University of California, Berkeley’s AMPLab in 2009 and later open-sourced in 2010.
  • Spark provides a unified framework for processing and analyzing large-scale data across various data sources, including Hadoop Distributed File System (HDFS), Apache Cassandra, Apache HBase, and more.
  • One of the key features of Spark is its in-memory processing capability, which allows it to cache data in memory, resulting in faster data processing and reduced disk I/O.
  • Spark supports various programming languages, including Scala, Java, Python, and R, making it accessible to a wide range of developers.
  • Spark offers a high-level API, called Spark SQL, which allows developers to perform SQL-like queries on structured data, enabling seamless integration with existing SQL-based tools and platforms.
  • With its resilient distributed datasets (RDDs) abstraction, Spark provides fault-tolerance and efficient distributed data processing, enabling reliable and scalable data analytics.
  • Spark’s machine learning library, known as MLlib, provides a rich set of algorithms and tools for building and deploying scalable machine learning models.
  • Spark Streaming allows developers to process real-time streaming data and perform near-real-time analytics on the data stream.
  • Spark’s graph processing library, GraphX, enables efficient processing and analysis of graph-structured data, making it suitable for tasks such as social network analysis and recommendation systems.
  • Apache Spark has a vibrant and active community, with frequent updates and contributions from various organizations and individuals worldwide.
  • Spark is widely adopted in industry and used by many renowned companies, including Netflix, Alibaba, Adobe, and IBM, among others.

Pros & cons of Apache Spark

6 Pros of Apache Spark

  • High Speed: Apache Spark is designed to process large-scale data quickly and efficiently. It achieves this by leveraging in-memory processing, which allows it to perform data operations up to 100 times faster than traditional disk-based systems.
  • Scalability: Spark can scale horizontally across clusters of machines, making it suitable for handling big data workloads. It can seamlessly distribute data and computations across multiple nodes, ensuring high availability and fault tolerance.
  • Flexibility: Apache Spark provides a wide range of APIs, allowing developers to write applications in multiple languages such as Scala, Java, Python, and R. This flexibility enables teams to use their preferred programming language and integrate Spark into their existing workflows.
  • Real-time Stream Processing: Spark Streaming module enables real-time processing of streaming data. It can handle large volumes of data in real-time, making it suitable for applications such as fraud detection, log analysis, and sensor data processing.
  • Advanced Analytics: Spark provides a rich set of libraries for machine learning (MLlib), graph processing (GraphX), and SQL queries (Spark SQL). These libraries make it easier for data scientists and analysts to perform complex analytics tasks without having to rely on separate tools.
  • Integration: Apache Spark integrates well with other popular big data technologies such as Hadoop, Hive, and HBase. It can read data from various data sources, including HDFS, Apache Cassandra, and Amazon S3, making it highly versatile for different use cases.

6 Cons of Apache Spark

  • Learning Curve: Apache Spark has a steeper learning curve compared to traditional big data tools. It requires knowledge of distributed systems and programming concepts, which can be challenging for beginners or teams without prior experience in distributed computing.
  • Memory Requirements: Spark’s in-memory processing relies heavily on RAM, and large datasets may require substantial memory resources. It is crucial to carefully allocate memory and optimize data storage to avoid out-of-memory errors.
  • Complexity: Spark introduces additional complexity in terms of its architecture, configuration, and deployment. Setting up and managing a Spark cluster requires expertise and proper infrastructure planning to ensure optimal performance and resource utilization.
  • Data Serialization: Spark uses its own data serialization mechanism, which may not be compatible with other tools. This can lead to challenges when integrating Spark with existing data pipelines or sharing data with systems that use different serialization formats.
  • Debugging and Monitoring: Debugging Spark applications can be more challenging compared to single-node applications. Identifying and resolving issues in distributed systems requires specialized tools and expertise. Additionally, monitoring the performance of Spark clusters and optimizing resource usage can be complex.
  • Cost: Spark clusters can be resource-intensive and require significant computational power, memory, and storage capacity. This can result in higher infrastructure costs compared to traditional batch processing systems.

Cases when Apache Spark does not work

  1. Insufficient hardware resources: Apache Spark requires a significant amount of memory and processing power to efficiently handle large-scale data processing tasks. If a system does not meet the minimum hardware requirements, Spark may fail to function properly or perform poorly. It is recommended to have a cluster with sufficient CPU cores, memory, and storage to ensure smooth operation.
  2. Incompatible versions: Apache Spark is a rapidly evolving technology, and different versions may introduce changes that are not backward compatible. If you try to run Spark code on an incompatible version, it may result in errors or unexpected behavior. It is crucial to ensure that the Spark version you are using is compatible with your code and other dependencies.
  3. Network connectivity issues: Spark relies on network communication between its components, such as the driver and executors. If there are network connectivity problems within the Spark cluster, it can lead to failures or delays in job execution. It is essential to have a stable and reliable network infrastructure in place to avoid such issues.
  4. Insufficient disk space: Spark performs various disk-based operations, such as shuffling data during processing. If the disk space available on the system running Spark is limited, it can lead to failures or performance degradation. Sufficient disk space should be allocated to accommodate the data processing needs of Spark.
  5. Unsupported data formats: Although Spark supports a wide range of data formats, there may be certain formats that are not compatible with Spark’s data processing operations. If you attempt to process data in an unsupported format, Spark may not be able to handle it correctly. It is important to ensure that the data you are working with is in a format supported by Spark.
  6. Insufficient data partitioning: Spark operates on data partitions, and the performance of Spark jobs heavily depends on how the data is partitioned. If the data is not properly partitioned, it can lead to uneven workload distribution among the Spark executors and result in performance issues. Adequate attention should be given to data partitioning strategies for optimal Spark performance.
  7. Improper configuration: Spark provides a wide range of configuration options that allow users to fine-tune its behavior according to their specific needs. If the Spark configuration parameters are not set appropriately, it can lead to suboptimal performance or even failure of Spark jobs. It is important to understand the various configuration options and adjust them based on the requirements of your workload.

What are top Apache Spark instruments and tools?

  • Apache Spark: Apache Spark is an open-source distributed computing system designed for big data processing and analytics. It was first released in 2010 and has gained significant popularity due to its speed and ability to handle large-scale data processing. Spark supports various programming languages and offers a wide range of libraries for data manipulation, machine learning, and graph processing. It is widely used by companies such as Netflix, Uber, and Airbnb for their data-intensive workloads.
  • Hadoop: Hadoop is an open-source framework that provides distributed storage and processing of large datasets. It includes the Hadoop Distributed File System (HDFS) for data storage and the MapReduce programming model for data processing. Apache Spark can be integrated with Hadoop, allowing users to leverage the benefits of both systems. Spark can read data from HDFS and perform advanced analytics on it, making it a powerful tool in the Hadoop ecosystem.
  • Apache Kafka: Apache Kafka is a distributed streaming platform that allows for the ingestion and processing of high-volume, real-time data streams. Spark Streaming, a component of Apache Spark, can be integrated with Kafka to process and analyze streaming data in real-time. This combination is commonly used in use cases such as real-time analytics, fraud detection, and monitoring systems.
  • Apache Cassandra: Apache Cassandra is a highly scalable and distributed NoSQL database designed for handling large amounts of data across multiple commodity servers. It provides a fault-tolerant and highly available data storage solution. Spark can be used to interact with Cassandra, allowing users to perform analytics and machine learning tasks on the data stored in Cassandra clusters.
  • Apache Flink: Apache Flink is an open-source stream processing and batch processing framework. It provides low-latency processing of real-time data streams and supports event time processing, state management, and fault tolerance. Flink can be used as an alternative to Spark Streaming for certain use cases that require strict event time processing and low latency.
  • Apache Zeppelin: Apache Zeppelin is a web-based notebook that provides an interactive and collaborative environment for data exploration, visualization, and analysis. It supports multiple programming languages, including Scala, Python, and SQL, and allows users to create and share interactive notebooks. Zeppelin can be integrated with Spark, enabling users to write and execute Spark code within the notebook environment.
  • Apache Parquet: Apache Parquet is a columnar storage file format designed for efficient and optimized data processing. It is compatible with various data processing frameworks, including Spark. Parquet provides benefits such as column pruning, predicate pushdown, and efficient compression, making it an ideal choice for big data analytics workloads.
  • Apache Arrow: Apache Arrow is a cross-language development platform for in-memory data. It provides a standardized format for efficient data interchange between different systems and programming languages. Spark leverages Apache Arrow for efficient data transfer and interoperability between Spark and other data processing tools.

How and where is Apache Spark used?

Case NameCase Description
Real-Time AnalyticsApache Spark enables real-time analytics by processing data in near real-time, allowing organizations to gain valuable insights and make informed decisions quickly. It can handle large volumes of data and perform complex computations in memory, resulting in faster processing times. This case is particularly useful in industries such as finance, e-commerce, and telecommunications, where real-time insights are crucial for optimizing business operations, detecting fraud, and improving customer experience.
Machine LearningApache Spark provides a powerful platform for building and deploying machine learning models at scale. It offers a rich set of libraries and algorithms, such as MLlib, that can be utilized for tasks like classification, regression, clustering, and recommendation systems. With its distributed computing capabilities, Spark can handle large datasets and perform iterative computations efficiently, making it ideal for training and deploying machine learning models in production environments.
Stream ProcessingApache Spark Streaming allows organizations to process and analyze streaming data in real-time. It supports various data sources, including Kafka, Flume, and HDFS, and provides high-level APIs for handling streaming data. This case is valuable in scenarios where continuous data ingestion and real-time analytics are required, such as monitoring social media feeds, analyzing sensor data from IoT devices, or detecting anomalies in network traffic.
Graph ProcessingApache Spark’s GraphX library enables efficient and scalable graph processing. It provides a unified API for performing graph computations and offers a range of graph algorithms, such as PageRank and connected components. This case is beneficial in applications like social network analysis, recommendation systems, fraud detection, and network optimization. Spark’s ability to distribute graph computations across a cluster of machines allows for faster processing of large-scale graph data.
Data IntegrationApache Spark facilitates seamless data integration by providing connectors for various data sources, including relational databases, Hadoop Distributed File System (HDFS), Amazon S3, and more. It supports reading and writing data in different formats, such as CSV, JSON, Parquet, and Avro. Spark’s ability to handle diverse data sources and formats makes it a versatile tool for data integration tasks like data ingestion, data transformation, and data loading into target systems.
Batch ProcessingApache Spark excels in batch processing scenarios, where large volumes of data need to be processed in parallel. It offers a distributed computing framework that leverages in-memory processing to accelerate batch jobs. Spark’s ability to cache data in memory and perform operations like filtering, aggregating, and transforming data efficiently enables faster batch processing times. This case is useful for various use cases, including data cleansing, data preparation, and running complex data transformations.
Data VisualizationApache Spark integrates with popular data visualization tools like Apache Zeppelin and Jupyter Notebook, allowing users to create interactive visualizations and reports. It provides APIs for generating visualizations from processed data, enabling data analysts and data scientists to gain insights from their data easily. This case is valuable for presenting data-driven insights, sharing reports, and conducting exploratory data analysis.

Let’s consider Difference between Junior, Middle, Senior, Expert/Team Lead developer roles.

Seniority NameYears of experienceResponsibilities and activitiesAverage salary (USD/year)
Junior0-2Assisting in the development of software applications, bug fixing, writing and executing test cases, learning and implementing new technologies, collaborating with senior developers.50,000-70,000
Middle2-5Designing and implementing software features, debugging complex issues, participating in code reviews, mentoring junior developers, collaborating with cross-functional teams, contributing to architectural decisions.70,000-90,000
Senior5-8Leading the development of complex software modules, providing technical guidance and mentorship to the team, conducting code reviews, optimizing performance and scalability, collaborating with product managers and stakeholders.90,000-120,000
Expert/Team Lead8+Leading a team of developers, setting technical direction and strategy, overseeing project timelines and deliverables, resolving technical challenges, representing the team in cross-functional meetings, driving innovation and process improvements.120,000+

Soft skills of a Apache Spark Developer

Soft skills are essential for an Apache Spark Developer to effectively collaborate, communicate, and contribute to the success of a project. These skills enable developers to work efficiently in a team, adapt to changes, and deliver high-quality solutions.

Junior

  • Strong problem-solving skills: Ability to analyze and troubleshoot issues, identify root causes, and propose effective solutions.
  • Effective communication: Clear and concise communication to understand requirements, work collaboratively, and provide updates to the team.
  • Attention to detail: Paying close attention to details in code, data, and documentation to ensure accuracy and quality.
  • Curiosity and eagerness to learn: Willingness to explore new technologies, learn from experienced team members, and continuously improve skills.
  • Team player: Ability to work well in a team, actively participate in discussions, and contribute to a positive and collaborative work environment.

Middle

  • Leadership skills: Ability to take ownership of tasks, guide junior developers, and mentor them to enhance their skills.
  • Time management: Efficiently manage tasks, prioritize work, and meet project deadlines.
  • Adaptability: Flexibility to adapt to changing requirements, technologies, and project dynamics.
  • Problem-solving mindset: Approach challenges with a structured and analytical mindset, leveraging past experiences to find optimal solutions.
  • Collaboration: Work effectively with cross-functional teams, build strong relationships, and promote teamwork.
  • Effective documentation: Proficient in documenting code, design decisions, and project information for knowledge sharing and future reference.
  • Attention to performance: Optimize code and query performance, identify bottlenecks, and propose improvements.

Senior

  • Strategic thinking: Ability to think beyond immediate tasks and contribute to long-term project planning and architecture.
  • Mentorship: Demonstrate expertise by mentoring team members, sharing best practices, and guiding them in their career growth.
  • Stakeholder management: Effectively communicate with stakeholders, understand their needs, and manage expectations.
  • Conflict resolution: Skillfully resolve conflicts within the team, facilitate constructive discussions, and promote collaboration.
  • Technical leadership: Lead technical discussions, provide guidance on design decisions, and drive technical excellence within the team.
  • Continuous improvement: Advocate for process improvements, identify areas for optimization, and implement best practices.
  • Strong decision-making: Make informed decisions based on data, experience, and business requirements.
  • Project management: Ability to plan, coordinate, and manage complex projects, ensuring successful delivery.

Expert/Team Lead

  • Strategic vision: Ability to envision long-term goals, align them with business objectives, and drive innovation.
  • Team management: Effectively manage a team, delegate tasks, provide feedback, and foster a culture of growth.
  • Influence and negotiation: Skillfully influence stakeholders, negotiate contracts, and resolve conflicts at a higher level.
  • Enterprise-level thinking: Understand the impact of decisions on the organization as a whole, considering scalability, security, and compliance.
  • Thought leadership: Contribute to the Spark community through research, publications, conference presentations, and open-source contributions.
  • Business acumen: Understand the business domain, identify opportunities for value creation, and align technical solutions with business goals.
  • Strategic partnerships: Build and maintain strategic partnerships with vendors, clients, and other industry leaders.
  • Risk management: Proactively identify and mitigate risks, develop contingency plans, and ensure project success.
  • Quality assurance: Drive a culture of quality by implementing robust testing practices, code reviews, and quality standards.
  • Resource management: Optimize resource allocation, manage budgets, and ensure efficient utilization of team members.
  • Executive communication: Effectively communicate technical concepts to non-technical stakeholders, ensuring alignment and support.
Table of Contents

Talk to Our Expert

Our journey starts with a 30-min discovery call to explore your project challenges, technical needs and team diversity.
Manager
Maria Lapko
Global Partnership Manager

Hire Apache Spark Developer as Effortless as Calling a Taxi

Hire Apache Spark Developer

FAQs on Apache Spark Development

What is a Apache Spark Developer? Arrow

A Apache Spark Developer is a specialist in the Apache Spark framework/language, focusing on developing applications or systems that require expertise in this particular technology.

Why should I hire a Apache Spark Developer through Upstaff.com? Arrow

Hiring through Upstaff.com gives you access to a curated pool of pre-screened Apache Spark Developers, ensuring you find the right talent quickly and efficiently.

How do I know if a Apache Spark Developer is right for my project? Arrow

If your project involves developing applications or systems that rely heavily on Apache Spark, then hiring a Apache Spark Developer would be essential.

How does the hiring process work on Upstaff.com? Arrow

Post Your Job: Provide details about your project.
Review Candidates: Access profiles of qualified Apache Spark Developers.
Interview: Evaluate candidates through interviews.
Hire: Choose the best fit for your project.

What is the cost of hiring a Apache Spark Developer? Arrow

The cost depends on factors like experience and project scope, but Upstaff.com offers competitive rates and flexible pricing options.

Can I hire Apache Spark Developers on a part-time or project-based basis? Arrow

Yes, Upstaff.com allows you to hire Apache Spark Developers on both a part-time and project-based basis, depending on your needs.

What are the qualifications of Apache Spark Developers on Upstaff.com? Arrow

All developers undergo a strict vetting process to ensure they meet our high standards of expertise and professionalism.

How do I manage a Apache Spark Developer once hired? Arrow

Upstaff.com offers tools and resources to help you manage your developer effectively, including communication platforms and project tracking tools.

What support does Upstaff.com offer during the hiring process? Arrow

Upstaff.com provides ongoing support, including help with onboarding, and expert advice to ensure you make the right hire.

Can I replace a Apache Spark Developer if they are not meeting expectations? Arrow

Yes, Upstaff.com allows you to replace a developer if they are not meeting your expectations, ensuring you get the right fit for your project.